APSYNC
Automated Precision Synthesis of Nanocrystals

SoPPoM –SBO4
Overview

• Apsync: what and why
• Objectives
• Situation within SoPPoM
• Status
• Concept and innovative aspects
• Conclusion
Apsync: what and why

- **APSYNC**: Automated Precision Synthesis of Nanocrystals
- What and why:

 - development and installation of:
 - an automated synthesis platform of parallel batch reactors
 - based on scalable reactor design concepts

 - offers the possibility to automatically execute:
 - different syntheses in parallel (high-throughput screening), or
 - the same synthesis multiple times (scaled up production)
Apsync: objectives

- **APSYNC : Automated Precision Synthesis of Nanocrystals**
- **Objectives:**

 - high-throughput screening of reaction chemistry/nanocrystal property relations for CI(G)S, QD and TCO nanocrystals
 - understanding of reaction chemistry/nanocrystal property relations via a combined approach of reaction simulations and experimental studies on reaction kinetics and reaction mechanisms
 - developing novel synthesis concepts where continuous precursor addition and in-situ reaction monitoring are combined to steer reactions towards a predefined nanocrystal size and size dispersion
 - large volume production of CIGS, QD and TCO nanocrystals
Apsync: situation within SoPPoM

SBO 1: abCIGS
- Synthesis precursor, NP's
- Surface chemistry
- Stable printable dispersions
- CIGS & hybrid inorganic-organic
- Annealing – CIGS
- Characterization

SBO 2: weTCOat
- Metal oxide screening
- Synthesis precursor, NP's
- Surface chemistry
- Stable printable dispersions
- Annealing
- Characterization

SBO 3: phyCIGS
- Cell integration
- Cell characterization
- Cell modeling
- Cell semiconductor physics

SBO 4: APSYNC
- Automated synthesis
- Scaled up synthesis of CIGS, QD and TCO
- QSPR for CIGS, QD and TCO
- Active reaction steering

ICON 1: OPvTECH
- Linear deposition process of multilayered stacks
- Design, fabrication and characterisation of multijunction OPV modules

ICON 2: CIGstack
- Inks and formulations
- Deposition technologies
- Rapid annealing

ICON 3: SOLCAP
- Improvement of CIGS cell efficiency and reliability at the module level (not cell level).
Apsync: interactions with SoPPoM projects

• larger volume precursor production
 - SoPPoM SBOs have delivered a first set of precursors that are relevant for the industrial research projects. These are being synthesized in larger quantities within Apsync.

• high-throughput screening
 - To shorten the time for materials development Apsync will use high-throughput screening of reaction conditions where the reference recipes developed within abCIGS and weTCOat are taken as a starting point.

• insight in reaction mechanisms.
 - Relations between reaction conditions, yield development, and final nanocrystal size that result from high-throughput screening experiments help understanding reaction mechanisms: information needed by abCIGS and weTCOat to further improve synthesis recipes or identify general concepts underlying the synthetic methods used.

• Whereas for the larger volume production, APSYNC will mainly rely on input from abCIGS and weTCOat, the high-throughput screening is an activity that will involve considerable feedback between the different projects.
Apsync : status

• Activities in four areas:

 – Platform for automated synthesis and purification of nanocrystals.

 – Delivery of Cl(G)S nanocrystals
 • To ICON 1 and 2 (through SBO1)
 • Initial delivery of 50 g (exceeded amounts, within agreed time frame)

 – Delivery of TCO nanocrystals
 • To ICON 1 and 2 (through SBO2)
 • Initial delivery planned for end of this month (in progress)

 – Delivery of colloidal QD
 • planned for 2014
Apsync : CIS nanoparticles

- Procedure from SBO-1 (UGent)

Copper(II) acetylacetonate → Indium(III) acetylacetonate → Sulfur → ODE → OLA

Heat 1h @ 240 °C → Centrifugation washing → CIS nanopowder

T2BKO – 170 nm x 170 nm
Apsync : CIS nanoparticles

- **Transfer to platform at Flamac**
 - Batches analysed by
 - X-ray diffraction,
 - UV-VIS and
 - TEM (selected)

![Graph showing 2θ angular distribution](image-url)
Apsync : AZO nanoparticles

- Procedure from SBO-2 (Imec/UHasselt)

<table>
<thead>
<tr>
<th>characteristic</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>morphology</td>
<td>spherical</td>
</tr>
<tr>
<td>size</td>
<td>30-40 nm</td>
</tr>
<tr>
<td>phase composition</td>
<td>Wurzite</td>
</tr>
<tr>
<td>Al-concentration</td>
<td>0-5 at%</td>
</tr>
<tr>
<td>solvent</td>
<td>benzylationmine</td>
</tr>
<tr>
<td>dispersion agents/ligands</td>
<td>none</td>
</tr>
</tbody>
</table>
Apsync : AZO nanoparticles

- Transfer to platform at Flamac
 - Variation in manual procedures during transfer procedure
 - Optimization of procedures regarding dopant addition
Apsync: platform

- Objectives:
 - development and installation of:
 - an **automated synthesis** platform of **parallel batch reactors**
 - based on **scalable reactor design** concepts
 - offers the possibility to automatically execute:
 - different syntheses in parallel (**high-throughput screening**), or
 - the same synthesis multiple times (**scaled up production**)

- Uniqueness ??
 - High-throughput methodologies are established as research tool
 - Scale-up is regular process
 - BUT: not if combined and aiming for “larger” volumes
Apsync : platform

- Challenges and advantages:
 - High throughput screening of materials: reduce time-to-market
Apsync : platform

- **Challenges and advantages:**
 - High throughput screening of materials
 - Automation, parallel/rapid sequential, miniaturize
 - Nanocrystal workflows : typically mg scale ...
 - Screening: optical, chemical, ... : OK
Apsync: platform

• **Challenges and advantages:**
 – **Screening:**
 • How about dispersing agent selection and optimization?
 • How about printing ink formulation and optimization?
 • How about post-processing of films?
 • How about ...
 • Much more material needed then mg scale : 100 g scale
 – **Upscaling:**
 • How relevant is a 250 mg scale lab synthesis for a 100 kg pilot batch, if reaction kinetics, diffusion and mixing are extremely important for particle morphology and size (distribution) (apart from chemical composition)?
 – All challenges (and more) tackled in the Apsync project ...
Apsync : platform

- Platform – Hardware
Apsync: platform

- **Platform – Hardware**
 - Five parallel reactors
 - Temperatures up to 300 °C
 - Atmospheric pressure
 - Inert atmosphere
 - Reflux (option)
 - Reactor volume ± 75ml each
 - Rapid heating-up (>100 °C/min)
 - Rapid cooling (> 60 °C/min)
 - **Dimensions**
 - Downscaled from DIN reactor dimensions
 - Including (baffled) stirring
 - From magnetic flee to Rushton turbine
Apsync : platform

• Platform – scaling :
 – Choice 1 : larger reactors than typical in high throughput screening
 – Choice 2 : multiple batches (fastest in screening phase)
 – Choice 3 : building knowledge on
 • Influence of process parameters
 • Kinetics and mechanisms
 • Providing input for application of scaling laws
Apsync : conclusion

• A unique platform for automated nanocrystal synthesis
 – Allowing high-throughput screening and experimentation
 • Materials (composition)
 • Process conditions
 – Allowing fundamental understanding of reaction mechanisms and kinetics
 – Allowing deduction inputs for scaling parameters

• Also for process research : high-throughput concept allows studying broader parameter space

• Concept under demonstration and first upscaled output (parallel batches) delivered to SoPPOM ICONs

• Important :
 – Nanocrystal is initiator and first case, but not limited to nanocrystal synthesis
 – Sustainability is important aspect of the study as well (use of alternative sources (eco-nomic/logic aspects), re-use/recycling of solvents, influence on reaction conditions, Eco-scale comparison of reaction settings, ...)

© Flamac 2013 | Confidential | C000049 - APSYNC | 2013-10-21 | 19