Optimizing interfacial strength between steel and polymer through plasma and wet chemistry treatments

Ellen Bertels
Amit Kr. Ghosh
Gabriella Da Ponte
Use of Coupling Agents

No Coupling Agent

Low interfacial strength
Use of Coupling Agents

No Coupling Agent

With Coupling Agent

Polymer Matrix

Steel

Coupling Agent
Use of Coupling Agents

3 HO-Si-OH

Y R Y R

HO-Si-O-Si-O-Si-OH
Use of Coupling Agents

Monolayer → Best performance
Silane Application
Two Different Technological Approaches

Plasma

PlasmaZone®

Time efficient
Avoid solvents
High throughput/Easy integration
High (investment) cost
Silane Application
Two Different Technological Approaches

Plasma

PlasmaZone®

Time efficient
Avoid solvents
High throughput/Easy integration
High (investment) cost

Wet Chemistry

Use of solvents
Low cost
Molecular control

SIM
innovating together
1. **Steel Cleaning**
 - Physical
 - Chemical
 - Mechanical

Silane Application

Wet Chemistry
2. Solution Preparation
- Type of Silane
- Solvent (ratio)
- Concentration
→ ‘Working window’
2. Solution Preparation
- Type of Silane
- Solvent (ratio)
- Concentration
→ ‘Working window’

(a1) Silane hydrolysis, (a2) Self-condensation & (b) Reaction to steel surface
2. Solution Preparation
- Type of Silane
- Solvent (ratio)
- Concentration
→ ‘Working window’

(a1) Silane hydrolysis, (a2) Self-condensation &
(b) Reaction to steel surface
3. Silane Deposition
- Dipping Time (Silane adsorption)
- Rinsing Time (Remove excess)
Silane Application
Wet Chemistry

4. Oven Conditions
- Vacuum/no vacuum
- Time
- Temperature
→ Condense silane to surface
→ Remove solvent residue

Wet Chemistry
Silane Application
Plasma Technology

Plasma → PlasmaZone®
Silane Application

Plasma Technology

Plasma → PlasmaZone® → Coated Steel

Silane Precursor

Carrier Gas → Ceramic → Coated Steel

HV

SIM
Silane Application
Plasma Technology

1. **Precursor Flow**
 - Type of chemistry
 - Amount of Silane
Silane Application

Plasma Technology

2. **Plasma Power**
 - As low as possible
 → Reduce precursor fragmentation
3. **Number of Passes**
- Thickness silane Layer
Silane Application

Plasma Technology

Post treatment (cfr. Wet Chemistry)

1. Oven
 - Tunable parameters
 - Low cost

2. Plasma
 - Fast
 - Combination with deposition → Investment cost ↓
 - In line
Determine Best Conditions

Pull-off testing (Dolly-plate-dolly)

Resin: EPIKOTE 828 LVEL + 1,2 Diamino Cyclohexane

Dolly-plate-dolly sample

Stress at break (MPa) = \(\frac{\text{Load at break (N)} \times 4}{\pi \times D^2 \text{ (mm)}} \)

* Plate thickness: 0.8 mm
* No of samples tested: 6
Optimization: Wet Chemistry

Condition:

- Silane solution concentration
- Dipping condition
- Rinsing Condition
- Condensation condition (oven condition: Temperature and Time)
Optimization: Wet Chemistry

Condensation condition

Optimum condition: 1.5 hr at 70°C in Vacuum

30 sec dip
Brief rinse
Optimization of rinsing condition and silane solution concentration

Optimum condition: Rinsing – 1 min, silane concentration: 2%
Optimization of dipping condition

Optimum condition: 2% silane solution, 30 sec of dipping, 1 min rinse in ethanol, condensation: 1.5 Hr@70°C (VAC)
Optimization: Plasma Technology

Condition:
- Precursor
- Plasma power
- No of passes
- Plasma post treatment
Optimization: Plasma Technology

Plasma Precursor: Pure APS vs APS+1% Water

- Plasma power: 350W
- No of passes: 6
- Condensation of silane: 4hr at oven (100°C)

![Graph showing Stress at break (MPa) for Blank, APS, and APS+1% water]
Optimization: Plasma Technology

Plasma Power

- Plasma precursor: APS+1% water
- No of passes: 6
- Condensation of silane: 4hr at oven (100°C)

Plasma Power: 200 W
Optimization: Plasma Technology

Effect of no of passes:

Optimum condition: APS+1% water (precursor), 200 W (power), 4 passes

- Plasma precursor: APS+1% water
- Plasma power: 250W
- Condensation of silane: 4hr at oven (100°C)
Optimization: Plasma Technology

Plasma post treatment

Stress at break (MPa)

- Blank
- Thermal condensation
- Plasma post treatment

* More details will be found at the Poster (Da Ponte Gabriella, VITO)
Comparison: Atmospheric plasma vs Wet treatment

![Graph showing comparison of stress at break (MPa) for different treatments.](image-url)

- **Blank**
- **Wet-1.5hr@70°C(VAC)**
- **Plasma-NF_Z_10-4hr@100°C**

Target value
Conclusions

• Optimize deposition conditions
 ➢ Increase interfacial strength – more than 300% improvement, better than the target value.
 ➢ Increase ‘product’ strength for both steel plate & steel fiber composites

• With both
 ➢ Plasma technology
 ➢ Wet chemistry application
 ❏ Each having their own advantages
Thank you