STREAM – SBO Polyforce

Towards scientifically based screening criteria for laser sinterable polymers

Leander Verbelen
Peter Van Puyvelde
Introduction

Additive manufacturing

• produce parts directly from digital models
• building layer-by-layer
Introduction

Types of Additive Manufacturing
- Fused deposition modeling
- Stereolithography
- Laser sintering
Introduction

Types of Additive Manufacturing

- Fused deposition modeling
- Stereolithography
- Laser sintering
Introduction

Laser Sintering
 + wide possibilities part design, customized products
 + functional, high quality parts
 - limited range of sinterable polymers (PA12)

➡ What makes a polymer sinterable?
 ➡ screening criteria defined in Polyforce
Polyforce consortium

Jean-Pierre Kruth
KU Leuven
Mechanical Engineering

Ludwig Cardon
UGent
CPMT

Peter Van Puyvelde
KU Leuven
Chemical Engineering

Bart Goderis
KU Leuven
Chemistry

machine development
polymers processing
material behaviour
What makes a polymer sinterable?

1) Powder flow
2) Sintering coalescence
3) Part solidification
What makes a polymer sinterable?

1) Powder flow

2) Sintering coalescence

3) Part solidification
Powder flow

Importance powder flow
 • smooth spreading
 • high packing density

How to measure powder flow?
 • angle of repose
 • film applicator setup
Powder flow

Film applicator setup
Powder flow

<table>
<thead>
<tr>
<th></th>
<th>PA12</th>
<th>PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer packing density</td>
<td>43%</td>
<td>59%</td>
</tr>
</tbody>
</table>

![PA12 powder image](image1)

![PS powder image](image2)

![PA12 layer image](image3)

![PS layer image](image4)
What makes a polymer sinterable?

1) Powder flow
2) Sintering coalescence
3) Part solidification
Sintering coalescence

Importance coalescence
 • part density
 • mechanical properties

How to analyze coalescence?
 • rheological data
 • direct visualization
Sintering coalescence

Rheological data

PA12

![Graph showing viscosity (η_0) vs. temperature (T) for PA12.](image)

PS

![Graph showing viscosity (η_0) vs. temperature (T) for PS.](image)

T_m and T_g are the melting and glass transition temperatures, respectively.
Sintering coalescence

Direct visualization
What makes a polymer sinterable?

1) Powder flow

2) Sintering coalescence

3) Part solidification
Part solidification

Problems during solidification
 • part warpage
 • crashing builds

How to analyze solidification behavior?
 • DSC / flash-DSC
 • NMR, WAXS/SAXS
 • measure shrinkage
Part solidification

Measure shrinkage
 • TMA adapter developed
Part solidification

1 Zoller et al., *Standard Pressure-Volume-Temperature Data for Polymers*, CRC Press, 1995
Part solidification

![Graph showing part solidification with percentages 2.2%, 8%, and 5% at specific temperatures.](image-url)
Conclusions

• Screening methodology for laser sintering materials
 1) Powder flow
 2) Sintering coalescence
 3) Part solidification

• Actual sintering tests have been conducted, but obtaining powders is often difficult

• Several candidates have been identified, and many more will be investigated in the near future
Thank you!

The Polyforce team

KUL-SMaRT: Michael Van den Eynde, Leander Verbelen
KUL-PCM: Olivier Verkinderen, Dorien Baeten
KUL-PMA: Sasan Dadbakhsh
Ugent-CPMT: Nicolas Mys
Materialise: Toon Roels, Tom Craeghs
Solvay: Philippe Brasseur, Vito Leo